Document Type : Research Paper


1 Ph.D of Motor Behavior, Department of Physical Education and sport science, Farhangian University

2 Associate Professor of Motor Behavior, Faculty of Physical Education and sport Science, University of Tehran


Rope jumping enhance coordination and doing joint rope jumping successfully requires precise temporal and spatial coordination. The aim of this study was to investigate the kinematics parameters in rope jumping plan and prediction of interpersonal coordination among elite players. In the applied research, 12 rope jumping available elite girls (13-18 years) were subjects of it. The participants practiced the different rope jumping tasks (individual and joint rope jumping in different distances with online landing) for one month, until they could do them properly and without online feedback (Seeing or hearing each other). The researcher used a Vicon motion analysis device with six infrared cameras capable of 120 frames per seconds to record three- dimensional movements of the legs and rope whirling.
The results of one- way ANOVA showed that with enough practice, even in the absence of feedback, hand-foot deviation time and timing variation in rope whirling of joint groups reached an equal level while their movement time, jump height and Landing Position showed a significant difference. The rope jumping, angular momentum and body vertical displacement are combined. In the other hand, placing and timing are important. So increasing difficulty and demand of joint task, amount of intra and interpersonal coordination will increase and coupling and anticipation power varied depending on joint and individual task constraints.


Main Subjects

  1. Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature neuroscience, 11(9), 1109.
  2. Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral cortex, 15(8), 1243-1249.
  3. Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 69-74.
  4. Constable, M. D., Pratt, J., Gozli, D. G., & Welsh, T. N. (2015). Do you see what I see? Co-actor posture modulates visual processing in joint tasks. Visual Cognition, 23(6), 699-719.
  5. Cross, E. S., Kraemer, D. J., Hamilton, A. F. D. C., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral cortex, 19(2), 315-326.
  6. Delavar A. (2006) 139. Research Method in Psychology and Educational Sciences. Tehran: Nashre virayesh (in Persian).
  7. Dötsch, D., Vesper, C., & Schubö, A. (2017). How you move is what I see: Planning an action biases a partner’s visual search. Frontiers in psychology, 8, 77.
  8. Keller, P. E., Novembre, G., & Hove, M. J. (2014). Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination. Phil. Trans. R. Soc. B, 369(1658), 20130394.
  9. Knoblich, G., & Jordan, J. S. (2003). Action coordination in groups and individuals: learning anticipatory control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(5), 1006.
  10. Knoblich, G., Butterfill, S., & Sebanz, N. (2011). Psychological research on joint action: theory and data. In Psychology of learning and motivation (Vol. 54, pp. 59-101). Academic Press.
  11. Konvalinka, I., Vuust, P., Roepstorff, A., & Frith, C. D. (2010). Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Quarterly journal of experimental psychology, 63(11), 2220-2230.
  12. Magill, R.A. (2011). Motor learning and control. Concepts and Applications.
  13. Marmelat, V., & Delignières, D. (2012). Strong anticipation: complexity matching in interpersonal coordination. Experimental brain research. 222(1-2): p. 137-148.
  14. Oullier, O., De Guzman, G. C., Jantzen, K. J., Lagarde, J., & Scott Kelso, J. A. (2008). Social coordination dynamics: Measuring human bonding. Social neuroscience, 3(2), 178-192.
  15. Ramenzoni, V. C., Davis, T. J., Riley, M. A., Shockley, K., & Baker, A. A. (2011). Joint action in a cooperative precision task: nested processes of intrapersonal and interpersonal coordination. Experimental brain research, 211(3-4), 447-457.
  16. Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature neuroscience, 7(1), 85.
  17. Richardson, D. C., Dale, R., & Kirkham, N. Z. (2007). The art of conversation is coordination. Psychological science, 18(5), 407-413.
  18. Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., & Schmidt, R. C. (2007). Rocking together: Dynamics of intentional and unintentional interpersonal coordination. Human movement science, 26(6), 867-891.
  19. Schmidt, R. C., & Richardson, M. J. (2008). Dynamics of interpersonal coordination. In Coordination: Neural, behavioral and social dynamics (pp. 281-308). Springer, Berlin, Heidelberg.
  20. Schmidt, R. C., & Turvey, M. T. (1994). Phase-entrainment dynamics of visually coupled rhythmic movements. Biological cybernetics, 70(4), 369-376.
  21. Schmidt, R. C., Carello, C., & Turvey, M. T. (1990). Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. Journal of experimental psychology: human perception and performance, 16(2), 227.
  22. Sebanz, N., & Knoblich, G. (2009). Prediction in joint action: What, when, and where. Topics in Cognitive Science, 1(2), 353-367.
  23. Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: bodies and minds moving together. Trends in cognitive sciences, 10(2), 70-76.
  24. Sebanz, N., Knoblich, G., & Prinz, W. (2005). How two share a task: corepresenting stimulus-response mappings. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1234.
  25. Stoffregen, T. A., Giveans, M. R., Villard, S., Yank, J. R., & Shockley, K. (2009). Interpersonal postural coordination on rigid and non-rigid surfaces. Motor Control, 13(4), 471-483.
  26. Taghi Eei ZE, Atri, A; Hashemi Javaheri, S. A.A (1999). "Evaluation of the prevalence of shoulder pain and function in elite female badminton players", Summery of the articles in regional congress of sports medicine, Kashmar: Islamic Azad university, 133-142, (in Persian).
  27. van der Wel, R. P., Knoblich, G., & Sebanz, N. (2011). Let the force be with us: dyads exploit haptic coupling for coordination. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1420.
  28. van Ulzen, N. R., Lamoth, C. J., Daffertshofer, A., Semin, G. R., & Beek, P. J. (2008). Characteristics of instructed and uninstructed interpersonal coordination while walking side-by-side. Neuroscience letters, 432(2), 88-93.
  29. Vesper, C., Abramova, E., Bütepage, J., Ciardo, F., Crossey, B., Effenberg, A., ... & Schmitz, L. (2017). Joint action: mental representations, shared information and general mechanisms for coordinating with others. Frontiers in psychology, 7, 2039.
  30. Vesper, C., Butterfill, S., Knoblich, G., & Sebanz, N. (2010). A minimal architecture for joint action. Neural Networks, 23(8-9), 998-1003.
  31. Vesper, C., Knoblich, G., & Sebanz, N. (2012). Motor Imagery of Interpersonal Coordination. Proceedings of KogWis 2012, 109.
  32. Vesper, C., van der Wel, R. P., Knoblich, G., & Sebanz, N. (2011). Making oneself predictable: Reduced temporal variability facilitates joint action coordination. Experimental brain research, 211(3-4), 517-530.
  33. Vesper, C., van der Wel, R. P., Knoblich, G., & Sebanz, N. (2013). Are you ready to jump? Predictive mechanisms in interpersonal coordination. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 48.
  34. Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological bulletin, 131(3), 460.
  35. Winter, D. A. (2009). Biomechanics and motor control of human movement. John Wiley & Sons.
  36. Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current biology, 11(18), R729-R732.
  37. Wriessnegger, S. C., Steyrl, D., Koschutnig, K., & Müller-Putz, G. R. (2016). Cooperation in mind: Motor imagery of joint and single actions is represented in different brain areas. Brain and cognition, 109, 19-25.
  38. Yves, V.A (2006) 158. Psychology for Physical educators, Mashhad: Astan Quds Razavi (in Persian).